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Abstract—This paper proposes a decision-assisted pilot place-
ment optimization method in IEEE802.11p physical layer. The
fast time-varying channel is first modeled as a typical Gaussian-
Markov process. Under the constraint of state-spaces, the pi-
lot optimization problem is further formulated as constrained
Markov decision processes (MDPs). Secondly, for achieving
compatibility with existing standards, our goal is to determine
the optimal pilot placement and employ only very limited pilot
patterns in response to fast varying channels. We develop a
channel state matched pilot optimization method, where the
optimization procedures focus on how to respond the different
channel variations in the time and frequency domains. To jointly
evaluate the severity of channel variations in the time and
frequency domains, we derive an effective mutual information
measurement criterion. Simulation and numerical results show
the efficiency of the pilot optimization decision scheme in reducing
the channel estimation error, and mutual information measure-
ment can yield an accurate performance evaluation in relatively
fast time-varying vehicular communication scenarios. 1

I. Introduction

IEEE802.11p systems currently adopt the identical pilot
pattern with the indoor IEEE 802.11a, a matured orthogonal
frequency division multiplexing (OFDM) technology which
mainly focuses on nomadic indoor usage. It has to face
the underlying risks in Vehicle-to-Infrastructure (V2I) and
Vehicle-to-Vehicle (V2V) communications owing to the delay
spread and Doppler spread. Pilot placement has a significant
impact on the high data rate transmission of pilot-assisted
orthogonal frequency-division multiplexing (OFDM) systems.

There are basically two categories for the pilot placement
optimization scheme. The first category focuses on finding
the number of optimal pilot symbol patterns to maximize
an upper bound for the constrained channel capacity. Several
famous criteria have been well studied to assess optimal
pilot patterns, for example, mean squared error (MSE), bit
error rate (BER) and symbol error rate (SER) [2-8]. In [3],
the authors exploited a heuristic algorithm to search for a
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trustworthy pilot carrier placement with a low MSE, as well
as an adaptive pilot placement. A summary of pilot pattern
designs can be found in [4]. The second category seeks to
develop a positive pilot design for channel estimation and
carrier frequency offset estimation for inter carrier interfer-
ence (ICI) cancellation. The concept of virtual pilots was
first proposed in [9], and Budiarjo et al. further applied this
concept to perform channel estimation of cognitve radio [7].
Recently, people have paid more attention to adaptive pilot
placement. Šemiko [10] proposed a framework of adaptive
pilot patterns, and attempted to obtain an upper bound of
a constrained capacity. The contribution of this paper is the
pilot optimization problem is formulated as constrained MDPs,
and we provide a fresh insight on how to respond to the
fast time-varying channel with very limited pilot patterns. In
order to reduce the computational complexity associated to
the pilot optimization procedure, we propose to track channel
variations using a pilot patterns based on the MDPs. The
proposed scheme for adaptive pilot placement is supported
by reliable mathematical derivations and experiments, thus, it
is applicable to fast-changing vehicular channel conditions.

The rest of the paper is organized as follows. In Section
II, we describe the pilot optimization model. In Section III,
we propose the mutual information assessment criterion and
describe the detail optimization method based on constrained
MDPs. An extensive simulation is presented in Section IV, and
the paper concludes in Section V.

II. Problem Formulation

A. OFDM Pilot Optimization Model

Considering the pilot-assisted OFDM system that employs
N subcarriers, the time-frequency grid is equipped with Np

pilot subcarriers and Nd data subcarriers. For the kth trans-
mitted data vector x(k) = [x(0) x(1) · · · x(k − 1)], it is
transferred into the time domain transmitted data as a N × N
diagonal matrix s(k) = diag[s(0) s(1) · · · s(k − 1)] by
an inverse discrete Fourier transform (IDFT), and the kth
transmitted symbol can be written as

s(k) =
N−1∑
n=0

x(k)e j2πnk/N k = 0, 1, ...,N − 1. (1)
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Suppose s(k) is transmitted over a L-tap multipath channel
h(k) = [h1 h2 ... hL]T , where hL is the transfer function of the
Lth tap. Assuming that the discrete Fourier transform (DFT)
at the receiver with coherent detection can be carried out
correctly without ICI, and the cyclic prefix is removed. Then,
the received data vector is demodulated by a unitary N × N
DFT matrix W

y(k) = s(k)WhT (k) + w(k), (2)

where the matrix element of W is given by Wnk = e− j2πnk/N

and w(k) is an independent and identically distributed (i.i.d.)
additive white Gaussian noise (AWGN).

Accordingly, considering that the additive ICI components
only come from adjacent subcarriers, the jth subcarrier of the
kth received signal in the frequency domain is represented as

Y j(k) = H j(k)S j(k)+
N−1− j∑

i=− j, i,0

H j+i(k)S j+i︸                  ︷︷                  ︸
ICI

(k)+W(k) i ≤ |imax| ,

(3)
where i is the index of the interference subcarrier, imax is the
maximum distance between the interference subcarriers and
W(k) is noise. A simplified vector expression of the Eq. (3)
can be written as

Y(k) = H̃(k)S(k) +W, (4)

where H̃(k) is the channel frequency response(CFR) matrix
containing the multiplicative channel gain of the kth subchan-
nel on its diagonal and the residual ICI gains on its non-
diagonal entries, and W is the i.i.d. AWGN vector.

In general, the typical channel fading process can be
modeled as a first-order Gauss-Markov process [4]. For
IEEE802.11p systems, the radio link (e.g., V2V and V2I),
should be characterized as time-varying and non-stationary
[11]. Let h(τ; t) and H(τ; f ) be the channel impulse response
(CIR) and CFR in the time and frequency domains, respec-
tively. Taking into account the effects of channel variance in
the time and frequency domains, they can be modeled as

hn = αhn−1 + en−1 (5a)
Hk = αHk−1 + Ek−1, (5b)

where n and k are indices, en−1, Ek−1 are zero-mean Gaussian
random vectors that are independent of the noise, and Hk is
CFR. In addition, the coefficients α ∈ (0, 1] shows how quickly
the channel changes in the time and frequency domains
respectively (Small α corresponds to fast fading, and large
coefficient refers to slow fading).

In this paper, we use parameter sets χ and ψ to characterize
the multipath fading channel in the time- and frequency-
domain, respectively. Here, χ : {α, ϕ, τ; t}L

ℓ=1 is defined as the
channel variances in the time domain (amplitude: α, phase:
ϕ and delay: τ). Similarly, ψ : {A,Φ, fd; f}L

ℓ=1 is represented
by the main parameters (amplitude: A, phase: Φ and Doppler
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Fig. 1. OFDM pilot optimization model based on MDPs

shift: fd) with respect to the frequency-domain. Then, the
optimization problem can be formulated as

max
u∈{χ,ψ}

C(u)

subject to Dκ(π) < Vκ, κ = 1, 2, ...,K,
(6)

where C(u) is the channel capacity, Dκ(π) ( κ = 0, 1, ...,K) is
the cost criteria related to a policy π, κ is a K-dimensional
vector of immediate costs, and Vκ is the given performance
bound [12]. Consequently, this optimization problem can be
solved with a specified decision policy.

Based on the above understanding, we propose a novel
OFDM pilot optimization scheme based on Markov decision
processes (MDPs). MDPs also known as controlled Markov
chains, constitute a basic framework for dynamically control-
ling systems that evolve in a stochastic way. A key Markovian
property is that conditioned on the state and action at some
time t, the past states and the next one are independent. MDPs
can be defined by a tuple X ,A,P ,c, d, where X is a state
space that contains a finite number of states, A is a finite set
of actions, P are the transition probabilities, c is an immediate
cost and d is a K-dimensional vector of immediate costs. The
main idea of this paper is that optimal pilot placement depends
on the specific channel state, and adapts to channel state
changes based on performance measurement. The optimum
problem of pilot placement is formulated as a constrained
MDP, where the steady decision for pilot placement selection
acts not only as the channel varying in the time domain but
also in response to the frequency domain. Fig. 1 illustrates the
pilot optimization model, where the optimal pilot placement
is chosen by a Markov decision process M to provide high
transmission performance. Ts is the period of a pilot placement
in the time grid, i.e., the length of the smallest block over
which the placement pattern repeats. fs is the normalized pilot
symbol spacing in the frequency grid, i.e., the number of
the allocated pilot subcarriers. As a pilot can be viewed as
a sounding probe signal or channel sampling, specific pilot
pattern could be the result of the regular periodic placement
of pilot symbols, denoted by fs and Ts. For a given placement
P , a binary string can be used to represent the the placement
pattern of pilot symbols in the frequency domain, where 0
and 1 represents information symbol and pilot, respectively.
P can be denoted as a 3-tuple P(m,∆,Z)



P(m,∆,Z) =


NP∑
i=0

2Z+i×∆(t) m = nTs

0 m , nTs,
(7)

where m is the period of insertion of pilot symbols, ∆ is the
interval of pilot subcarriers, NP is the number of pilots and Z
is the first pilot subcarrer location at the time-frequency grid.

In Fig. 1, we consider a constrained Markov decision pro-
cess M with finite state, action, and reward spaces, thus, the
computation of (6) appears to have lower complexity. In this
case, M is employed to determine the optimal P∗(m,∆,Z),
which aims to deal with the different channel conditions.
Typically, M is a 5-tuple M = (S ,A,A(s⃗), T ,R), where
S : {s⃗1, s⃗2, ..., s⃗n} is a state space that contains a finite
number of states, A : {a1, a2, ..., an} is a set of actions,
A(s⃗) is the set of admissible actions in state s⃗, T : [0, 1]
is the transition probability function and R : (s⃗, a) is the total
reward function [13-14]. Here, the state set S is assumed to
be associated with the varying channels hn : {h1,h2, ..., hn}.
Once the MDPs reach a steady state s⃗ j, s⃗ j ∈ S , we should
input a strategy that the chosen action a j ∈ A is to obtain the
optimal P∗(m,∆,Z) in response to the probability distribution
h j. For any policy π and initial state distribution β, the cost

function Cn(β,π) =
n∑

t=1
Eπβc(St,At) can be used in applications

of control of MDPs [14].
To validate the performance of pilot pattern, this paper

adopts a minimum mean-square error (MMSE) estimator, and
the optimization problem of (6) can be rewritten as

max
u∈{χ,ψ}

C(u) ≡ min
h∈S

E
[∣∣∣h − ĥp

∣∣∣2] ∀S

subject to Dκ(π) < Vκ, κ = 1, 2, ...,K
and P∗(m,∆,Z),

(8)

where ĥp is the estimates of CIR at the pilot position. Tradi-
tionally, (8) can be solved by the exhaustive search, but the
complexity is always high [3].

B. Complexity Trade-offs

We believe that many more pilot patterns might not be
better. In fact, it is impossible to find all possible channel
matched pilot patterns because the number of state-spaces
S is far greater than the number of pilot patterns P .
Although more pilot patterns might achieve a higher network
throughput, it is unattractive for practical applications since
the computation of an optimal policy is very costly (e.g.,
exhaustive searching). For the channels exhibiting limited
states, consequently, we consider a pilot optimization scheme
based on constrained state-space. The basic idea is to
generate limited pilot patterns, and choose a near-optima
pilot placement to deal with the fast varying channels.
With respect to channel estimation in fast time-varying
vehicular channels, we develop an enhanced pilot scheme
to improve the estimation performance. We further propose
three enhanced pilot patterns, where pattern 0 represents
fixed pilot placement, pattern 1 and 2 represent enhanced

pilot placement. In pattern 0, four pilot subcarriers are added
by taking the values 0 4 001 0008 0020, where time and
frequency domain representation of pilots with inserted rate
Ts and fs. In pattern 1, the inserted rate is 1/2T s and 2 × fs,
and eight pilot subcarriers are added by taking the values
0 4081 0208 1021. In pattern 2, the inserted rate is the
same as that in pattern 0, and the difference is that four
pilot subcarriers are added by taking the alternated values
0 4 001 0008 0020 and 0 0080 0200 1001, respectively.
Generally, there are two major issues in pilot placement: (1)
the channel capacity/ spectral efficiency, and (2) the capacity/
spectral efficiency is associated with pilot placement (e.g.,
the percentage of pilot symbols in the data stream). It is
clear that the enhanced patterns do not change the density of
pilots on the time-frequency grid, thus, our pilot placement
could be utilized without any capacity loss. By using a virtual
pilot-aided channel estimation method, additional pilots can
be exploited to yield accurate channel estimates and track
carrier frequency offset (the detail of virtual pilots has been
well studied in [7][9]).

III. Pilot Placement Optimization
A. Mutual Information Measurement Criteria

From the received signal model in (1) and (2), the mutual
information in time and frequency domain are given by

I(x; y) = H(x) −H(x |y ) (9a)
I(X; Y) = H(X) −H(X |Y ), (9b)

where H(·) denotes entropy. Similarly, let x = {x1, x2, ..., xi}
and X = {X1, X2, ..., Xi} be the transmitted signals in time
and frequency domain, accordingly, y = {y1, y2, ..., y j} and
Y = {Y1,Y2, ..., Y j} are the received signals. We can calculate
the average mutual information using

I(x; y) = E
[
I(xi; y j)

]
=
∑

i

∑
j

p(xi, y j)log2
p(xi, y j)

p(xi)p(y j)
(10a)

I(X; Y)=E
[
I(Xi; Y j)

]
=
∑

i

∑
j

p(Xi,Y j)log2
p(Xi,Y j)

p(Xi)p(Y j),

(10b)

where p(·) is used to describe the posterior distribution in
time- and frequency-domain, respectively. Mutual information
has been verified as an efficiency criterion for performance
assessment and is equivalent to the traditional estimation
theory (e.g., least square (LS) and MMSE) [11].

Consequently, for pre-defined channel variant collection χ
and ψ, we can jointly assess the effect of channel parameters
ϕ and Φ in the time- and frequency-domain, which are given
by

∂

∂ϕ
I(x |y ) = E

∂log2Pϕ

y|x

∂ϕ
log2Pϕ

x|y

 , ϕ ∈ χ (11a)

∂

∂Φ
I(X |Y ) = E

∂log2PΦY|X
∂Φ

log2PΦX|Y

 ,Φ ∈ ψ. (11b)



Observing (11a) and (11b), we can find a distribution that
it can maximize I(X; Y) and I(x; y), while also maximizing
the channel capacity. We determine P∗ numerically by maxi-
mizing the mutual information with binary inputs. Hence, the
joint optimization problem is to maximize capacity C in the
time- and frequency-domain. For pilot-assisted OFDM system,
it can be represented as

arg max
ϕ∈χ

C
(
ϕ : x; y

∣∣∣ĥp

)
or arg max

Φ∈ψ
C
(
Φ : X; Y

∣∣∣Ĥp

)
subject to P∗(m,∆,Z),

(12)

where Ĥp is the estimation of CFR at the pilot positions. The
next section will develop a steady policy to obtain P∗.

B. Constrained Markov Decision Process

Denote a specified MDP associated with the time-varying
wireless channels as M = (S ,A,A(s⃗), T ,R) and define
Ẑ (S, a) as the evaluation of channel variation. Notice that
Ẑ (S, a) can be clearly evaluated using mutual information
criteria. Suppose we have an action at different time epochs

a j ∈ A with expected reward R. For any state s⃗i, s⃗ j ∈
S , define Ẑ

(
s⃗i, ai
)

as the estimate of channel variation, if∣∣∣∣̂Z (s⃗i, ai
)− Ẑ

(
s⃗ j, a j

)∣∣∣∣ < ε, then s⃗i, s⃗ j can be aggregated to the
k subset Sk, it is also true that Sk is a subset of S, i.e., Sk ⊆ S .

Consequently, under the state-spaces constraint, we can
significantly reduce the number of state-spaces and easily
solve value iteration using linear programming, and the action
sets can further be reduced. In the previous discussion, we
have shown that typical channel states can be summarized
as the channel variations in the time- and frequency-domain.
Furthermore, the channel states can be simplified as a series
of subsets, e.g., S t, S f and S t− f , which represent the three
typical intensities of channels variations. At the beginning, we
assigned a fixed 802.11p pilot pattern to S t

1 in the absence of
any measurement information.

Let the expected reward for taking the action be policy π,
which aims to obtain P∗. A suboptimum decision procedure
for P∗ can be presented as four steps.

Step 1: We use Vπ to denote the value function for policy π,
and the state space is limited as a subset Si, e.,g., S t

i ,S
f

i ,S
t− f
i

Vπ(Si) = R(Si) + γ
∑
S′

i

T (Si |Si, a = π(Si) )VπS ′
i , (13)

where γ is the discount factor ∈ (0, 1].
Step 2: According to the Bellman equation [12], the optimal

value function V∗ can be iterated by using

V∗(Si)=max
a∈A

R(Si, a)+γ
∑
S′

i

T (S ′
i |Si, a=π(Si) )V∗

π (S ′
i )

 ,
(14)

where V∗
π (S), s⃗ ∈ Si, is unique.

Step 3: The optimal policy π∗ for state transition is

π∗(a) =

arg max
a∈A

R(Si, a) + γ
∑
S′

i

T (S ′
i |Si, a = π(Si) )V∗

π (S ′
i )

 .
(15)

Step 4: Acoording to (8), the output P∗ based on MMSE
estimators is used for optimal channel estimates. Futhermore,
the channel estimates at the virtual pilot positions can be
predicted from past observations by cure fitting or linear
interpolating, and the obtained estimates are regarded as
approximate estimates of pilot [4] [7].

In steps 1-3, we have noticed R(Si, a) ≡ 1/I(X; Y). In
Section II, we define a 3-state Markov model as an input to
the MDPs, so the complexity of the value iteration algorithm
is low. Next, a linear programming algorithm can be carried
out until the value of V∗(Si) is determined [12-13].

IV. Numerical Results

A. Simulation Settings

The performance of the proposed pilot placement optimiza-
tion with constrained MDPs has been evaluated by extensive
simulation. The OFDM signal used for 802.11p comprises 52
subcarriers. Of these 48 are used for the data transmission and
four are sued as pilot subcarriers. The separation between the
individual subcarriers is 0.3125 MHz. This results from the
fact that the 20 MHz bandwidth is divided by 64. As afore-
mentioned in Sectiion II, the indices of the pilot subcarrier can
be computed from (7). The physical-layer parameter settings
conform to 802.11p standards (typical simulation settings: 52
subcarriers, QPSK modulation and 1/2 coding rate). We adopt
the fast time-varying channel estimation scheme in [15] and
the V2V channel model in [11]. In our simulation, the basic
extension model (BEM) is utilized to accurately approximate
the time-varying channel by a weighted sum of complex

exponentials h(n, k) =
Q∑

q=1
hq(k)e jωqk, where the coefficients hq

and frequency ωq are the estimated parameters. Owing to the
highest energy efficient and perfect frequency band-limited,
the discrete prolate spheroidal BEM (DPS-BEM) sequences
can be used to parameterize the deterministic channel (due
to space restrictions, the readers can refer to the detail in
above literatures). We consider three typical vehicle scenarios,
highway (120, 90 km/h) and urban (50 km/h).

B. Performance Analysis

Figs. 2 and 3 illustrate the measurement performance of the
average mutual information criteria in the time- and frequency
domain, and we evaluate the ICI due to loss of orthogonality
(by time delay and frequency offset). Note that the channel
codec is not considered in baseband processing, and the
resolutions would be significantly increased in high SNR
conditions (e.g., 20 dB). We selected the RMS delay spread
of a TU6 channel τrms = 1.1 µs to reveal the characteristic of
channel in the time domain, while setting the delay between
two channels as τ1 = 30 ns, τ2 = 300 ns, τ3 = 900 ns.
Fig. 2 shows that with the increase of SNR, the resolution
increases accordingly. Fig. 3 shows the evaluation of the
channel variation in the frequency domain. According to the
equation (3), we only consider the additive ICI components.
Another observation from Fig. 3 is that there is no significant
improvement of capacity in high speed conditions, where ICI
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Fig. 2. Average mutual information vs SNR: I(x; y) were obtained from
1000 OFDM symbols. α is set as 0.95.

��������	
����������������

��������

� �� �� ��

�
�
�
 �
!

�
��

�
��
"�

#�
�

�
��
�
�
��

$
��
%&

%'
(
�

� �

� �

� �

� �

� )

� *

� +

�,����

"-"�����.��
�
/���

"-"�����.��
�
/*��

"-"�����.��
�
/����

Fig. 3. Average mutual information vs. SNR: I(X; Y) were obtained
from 1000 OFDM symbols. α is set as 0.90.

gain is set as δ1 = 3 dB (50 km/h), δ2 = 5 dB (90 km/h) and
δ3 = 10 dB (120 km/h). To accelerate the value iteration, we
used λ = 0.985 for the discount factor with ε = 0.015 for
convergence. It ran for 1000 iterations before it converged.

Fig. 4 shows the MMSE channel estimator performance,
where the enhanced pilot patterns are employed (refers to Fig.
2). We adopt a linear fitting method to obtain the predicted
CIR at the virtual pilot position. We observe that there are sig-
nificant performance gains through introducing virtual pilots.
Fig. 4 also investigates two different high mobility scenarios,
and one can see that the MSE is low which suggests a robust
estimator performance.

V. Conclusion

In this paper, we have proposed a low-complexity pilot
placement optimization method in IEEE802.11p physical layer
based on constrained Markov decision processes. A channel
state matched pilot optimization method has been developed.
We have derived an efficient mutual information criteria to
evaluate the characteristics of the channel varying in the time
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Fig. 4. Channel estimator performance: MSE vs SNR, OFDM block
length N = 2000, NP = 4.

and frequency domains. The main advantage of this scheme is
that very limited pilot placements can be employed in response
to fast varying channels, and may be easily extended to the
other pilot-assisted OFDM and MIMO-OFDM systems.
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